Abstract

Estrogens activate male-typical sexual behavior in several mammalian and avian models. Estrogen signaling also appears critical in the control of sex change in some fishes, in which it is instead decreases in estradiol levels that may permit development of male-typical behaviors. The bluehead wrasse is a protogynous hermaphrodite that exhibits rapid increases in aggressive and male-typical courtship behavior as females undergo sex change. Removal of the ovaries does not prevent these changes. In two field experiments involving gonadally-intact and gonadectomized females, estradiol (E2) implants prevented behavioral sex change in large females who were made the largest members of their social groups through removals of more dominant fish. In contrast, cholesterol-implanted control females showed full behavioral sex change, along with a higher frequency both of aggressive interactions and of male-typical courtship displays than occurred in E2-implanted animals. To assess potential neural correlates of these behavioral effects of E2, we evaluated abundances of aromatase mRNA using in situ hybridization. Aromatase mRNA was more abundant in the POA of E2-implanted females than in cholesterol-implanted controls in gonadally-intact females. The lack of behavioral sex change coupled with increased levels of aromatase mRNA are consistent with an inhibitory role for E2, likely of neural origin, in regulating socially controlled sex change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call