Abstract
We administered the synthetic estrogen, diethylstilbestrol (DES), or the antiestrogen, tamoxifen, to pregnant guinea pigs and observed the consequences for sexual differentiation of their female offspring. Hormones were administered during the period when treatment of fetuses with testosterone influences the development of sex-related traits (approximately Days 30 to 65 of gestation). Ovarian function, masculine and feminine sexual behavior, and the structure of a sexually dimorphic neural region in the preoptic area were assessed in adulthood in hormone-exposed animals and in oil-treated and untreated controls. Prenatal exposure to DES dipropionate (DESDP) caused masculinization and defeminization. DESDP-treated females mounted more than control females, both without hormonal stimulation and when given testosterone propionate (TP) as adults. The sexually dimorphic neural region was also masculinized in these females. In regard to defeminization, they showed delayed vaginal opening, impaired progesterone (P) production, an absence of corpora lutea, and impaired lordosis and mounting responses to estradiol benzoate (EB) and P. Prenatal treatment with tamoxifen produced a complicated pattern of results. Tamoxifen-exposed females evidenced less masculine-typical behavior, showing diminished mounting without hormonal stimulation and in response to TP. However, they also showed delayed vaginal opening, enhanced P production, and impaired mounting in response to EB and P. Their lordosis behavior and the volume of the sexually dimorphic neural region were unaffected. These results suggest that estrogens play a substantial role in sexual differentiation in the guinea pig. High levels of estrogen promote masculine-typical development, and unusually low levels may impair some aspects of both masculine-typical and feminine-typical development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.