Abstract

In the past decade the list of chemicals in the environment that are able to mimic the natural hormone estrogen, thereby disrupting endocrine function, has grown rapidly. These chemicals are able to bind to estrogen receptors (ERs) and influence estrogen signalling pathways, although several of them have structures that differ substantially from the endogenous hormone 17beta-estradiol. In this study, six extensively used ultraviolet (UV) filters were assessed for transcriptional activation of estrogen receptors. Because of their high lipophilicity, these UV filters tend to bioaccumulate in the environment. They have been found in surface waters, fish, and in human milk fat. Using a sensitive in vitro reporter gene assay, we found that all six compounds induce estrogenic activity towards ERalpha, while four out of six compounds induced transcriptional activity of ERbeta. Zebrafish, in which an estrogen responsive luciferase reporter gene has been stably introduced, were used for in vivo testing. In this transgenic zebrafish assay none of the compounds showed estrogenic activity. Our findings suggest that one should be aware of over-interpretation when predicting in vivo effects from weak in vitro data. However, it can not be ruled out that these UV filters have long-term effects in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call