Abstract

Japanese eels are commercially valuable species in Asian aquaculture. This study evaluated whether salmon pituitary extract (SPE) or 17β-estradiol (E2) treatment can induce cytotoxic activity in eel ovarian follicles. Follicular cells died after exposure SPE for 24-h culture in an in vitro culture. Moreover, the E2 treatment also significantly reduced follicular cell counts. These results reveal that the inhibition of follicular cell numbers by SPE may occur through SPE-induced steroidogenesis. Results of a quantitative PCR analysis indicated that adding E2 to the culture decreased bcl2 and increased dnmt1 mRNA expression in Japanese eel follicular cells after 24 h. The results of a promoter assay revealed that E2 significantly increase dnmt1 promoter activity through estrogen receptor-binding site. An in silico analysis predicted several putative transcription factors targeting the bcl2 gene promoter region. Methylation of the bcl2 promoter accounted for the downregulation of bcl2 by E2-mediated dnmt1. The DNA methylation level of the bcl2 gene was significantly higher in E2-treated follicular cells than that in the control group. Finally, the E2-induced hypermethylation pattern of the bcl2 promoter and the reduction in follicular cell numbers were suppressed by adding an MTase inhibitor. Our findings demonstrate that estrogen has a negative effect on the reproductive system of female eels by regulating an epigenetic mechanism during artificial maturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call