Abstract

Estrogen mediates important cellular activities in estrogen receptor negative (ER-) breast cancer cells via membrane associated G protein-coupled receptor 30 (GPR30). However, the biological role and mechanism of estrogen action on cell motility and invasion in this aggressive kind of tumors remains poorly understood. We showed here that treatment with 17β-estradiol (E2) in ER-negative cancer cells resulted in ezrin-dependent cytoskeleton rearrangement and elicited a stimulatory effect on cell migration and invasion. Mechanistically, E2 induced ezrin activation was mediated by distinct mechanisms in different cell contexts. In SK-BR-3 cells with a high GPR30/ERβ ratio, silencing of GPR30 was able to abolish E2 induced ERK1/2, AKT phosphorylation and ezrin activation, whereas in MDA-MB-231 cells with low GPR30/ERβ ratio, E2 stimulated ezrin activation was mediated by the ERβ/PI3K/AKT signaling pathway. Importantly, we showed that activation of GPR30 signaling significantly prevents ERβ activation induced ezrin phosphorylation, cell migration and invasion, indicating an antagonist effect between GPR30 and ERβ signaling in MDA-MB-231 cells. These findings highlight the important interplay between different estrogen receptors in estrogen induced cell motility and invasiveness in ER-negative breast cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call