Abstract
Various gastrointestinal (GI) disorders have a higher prevalence in women than in men. In addition, estrogen has been demonstrated to have an inhibitory effect on the contractility of GI smooth muscle. Although increased plasma estrogen levels have been implicated in GI disorders, the role of gastric estrogen receptor (ER) in these sex-specific differences remains to be fully elucidated. The present study was designed to investigate the sex-associated differences in the expression of the two ER isoforms, ERα and ERβ, and the effect of estrogen on gastric muscle contraction via the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway. Experiments were performed on single gastric smooth muscle cells (GSMCs) isolated from male and female Sprague Dawley rats. The effect of acetylcholine (ACh), a muscarinic agonist, on the contraction of GSMCs was measured via scanning micrometry in the presence or absence of 1 µM 17β-estradiol (E2), an agonist to the majority of ERs, 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), an ERα agonist, or diarylpropionitrile (DPN), an ERβ agonist. The protein expression levels of ER subtypes in GSMCs were measured using a specifically designed ELISA. GSMCs from female rats had a higher expression of ERα and ERβ protein compared with GSMCs from males. ACh induced less contraction in female that in male GSMCs. Pre-treatment of GSMCs with E2 reduced the contraction of GSMCs from both sexes, but to a greater extent in those from females. PPT and DPN inhibited ACh-induced contraction in GSMCs from females. Furthermore, E2 increased NO and cGMP levels in GSMCs from males and females; however, higher levels were measured in females. Of note, pre-incubation of female GSMCs with Nω-nitro-L-arginine, a NO synthase inhibitor, or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a guanylyl cyclase inhibitor, reduced the inhibitory effect of estrogen on GSMC contraction. In conclusion, estrogen relaxes GSMCs via an NO/cGMP-dependent mechanism, and the reduced contraction in GSMCs from females by estrogen may be associated with the sex-associated increased expression of ERα and ERβ, and greater production of NO and cGMP, compared with that in GSMCs from males.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.