Abstract

Estrogens are proposed to exert protection against cardiovascular disease, and evidence now suggests that this protection involves a direct vasodilatory effect. We have shown previously that estrogen relaxes endothelium-denuded porcine coronary arteries by opening the large-conductance calcium- and voltage-activated potassium (BKCa) channel of myocytes through guanosine 3',5'-cyclic monophosphate (cGMP)-dependent phosphorylation (35). The present study confirms these results and now demonstrates that this mechanism involves production of nitric oxide (NO). S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, or 8-bromo-cGMP mimicked the effect of estrogen on BKCa channels. Furthermore, inhibition of NO synthase (NOS) attenuated estrogen- or tamoxifen-induced BKCa-channel activity, and this effect was disinhibited by L-arginine. Inhibition of guanylyl cyclase activity blocked the stimulatory effect of estrogen, SNAP, or L-arginine on BKCa channels. Furthermore, 17 beta-estradiol stimulated accumulation of nitrite and cGMP in coronary myocytes. Therefore, we propose that the vasodilatory effect of estrogen on the coronary circulation is mediated by NO. A portion of the beneficial cardiovascular effects of estrogen may be attributed to relaxation of vascular smooth muscle by a process that involves NO- and cGMP-dependent stimulation of BKCa channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call