Abstract

Glomerular diseases are the leading cause of chronic kidney disease, and mesangial cells (MCs) have been demonstrated to be involved in the pathogenesis. Puromycin aminonucleoside (PAN) is a nephrotoxic drug that induces glomerular injury with elusive mechanisms. The present study was undertaken to investigate the role of PAN in MC apoptosis, as well as the underlying mechanism. Here we found that PAN induced MC apoptosis accompanied by declined cell viability and enhanced inflammatory response. The apoptosis was further evidenced by increments of apoptosis regulator BAX (BAX) and caspase-3 expression. In line with the apoptotic response in MCs following PAN treatment, we also found a remarkable induction of estrogen-related receptor-α (ERRα), an orphan nuclear receptor, at both mRNA and protein levels. Interestingly, ERRα silencing by an siRNA approach resulted in an attenuation of the apoptosis and inflammatory response caused by PAN. More importantly, overexpression of ERRα in MCs significantly triggered MC apoptosis in line with increased BAX and caspase-3 expression. In PAN-treated MCs, ERRα overexpression further aggravated PAN-induced apoptosis. In agreement with the in vitro study, we also observed increased ERRα expression in line with enhanced apoptotic response in renal cortex from PAN-treated rats. These data suggest a detrimental effect of ERRα on PAN-induced MC apoptosis and inflammatory response, which could help us to better understand the pathogenic mechanism of MC injury in PAN nephropathy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.