Abstract

Epidemiological evidence and estrogen replacement studies suggest that estrogen has a protective effect on the cardiovascular system against coronary artery disease. Vascular smooth muscle (VSM) cell replication has been shown to play a causative role in the pathogenesis of atherosclerosis. Therefore, in this study, we investigated the effect of chronic treatment of cultured guinea pig coronary artery VSM cells with physiological concentrations of 17beta-estradiol (E2) on thymidine incorporation, cell proliferation, and bradykinin-stimulated cytosolic calcium concentration ([Ca2+]i). Bradykinin at physiological concentrations causes contraction of endothelium-denuded guinea pig coronary artery rings in a concentration-dependent manner. VSM cells were first treated with low doses of E2 (10 pg/ml) for 1-2 days followed by treatment for 4-6 days with 50 pg/ml of E2, a concentration similar to that found in pregnancy. Using these protocols, we consistently observed the presence of E2-receptor mRNA in VSM cells by a ribonuclease protection assay. Fetal calf serum-stimulated [3H]thymidine incorporation was significantly reduced (P < 0.05) in E2-treated cells compared with untreated control cells. Similarly, E2 treatment significantly inhibited fetal calf serum-stimulated VSM cell proliferation compared with untreated control cells (P < 0.05). We also tested the hypothesis that E2 treatment attenuates agonist-stimulated [Ca2+]i in VSM cells because acute E2 treatment has been shown to produce relaxation of precontracted isolated coronary artery preparations. E2 treatment of VSM cells resulted in a significant decrease in bradykinin-stimulated [Ca2+]i compared with untreated cells (P < 0.05). In conclusion, our data demonstrate that estrogen at physiological concentrations directly regulates coronary VSM cell function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call