Abstract

Extracellular adenine nucleotides and nucleosides, such as adenosine-5'-triphosphate (ATP) and adenosine, are among least investigated signaling factors that participate in 17β-estradiol (E2)-mediated synaptic rearrangements in rodent hippocampus. Their levels in the extrasynaptic space are tightly controlled by ecto-nucleoside triphosphate diphosphohydrolases1-3 (NTPDase1-3)/ecto-5'-nucleotidase (eN) enzyme chain. Therefore, the aim of the present study was to get closer insight in the E2-induced decrease in NTPDase and eN activity in the hippocampal synaptic compartment of male rats and to identify estradiol receptors (ERs i.e. ERα, ERβ or GPER1) responsible for the observed effects of E2. In this study we show indiscriminate participation of estradiol receptor α (ERα), -β (ERβ) and G- protein coupled estrogen receptor 1 (GPER1) in the mediation of E2 actions in hippocampal synaptosomes of male rats. Synaptic NTPDase1-3 activities are modulated only through activation of ERβ, while activation of ERα, -β and/or non-classical GPER1 decreases synaptic eN activity. Since both ATP and adenosine function as neuromodulators in the hippocampal networks, influencing its function, profound knowledge of mechanisms by which ectonucleotidases are regulated/modulated is of great importance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.