Abstract
The estrogen receptor (ER) binds to DNA fragments containing estrogen response elements (EREs) and causes them to bend. To characterize this ER-induced DNA bend and determine if it is involved in transcription activation, three different lines of investigation were used. Using MCF-7 human breast cancer cell extracts and circular permutation analysis, it was determined that molybdate-stabilized, unoccupied cytosolic ER was unable to bind to ERE-containing DNA fragments when maintained at 4 C, but that thermal activation enabled the cytosolic receptor to bind and bend ERE-containing DNA fragments to the same extent as ER present in whole cell extracts. DNA phasing analysis was utilized to determine that ER binding induced DNA fragments containing EREs to bend toward the major groove of the DNA helix. The orientation of this bend was the same with thermally activated, unoccupied cytosolic ER and with unoccupied ER, 17 beta-estradiol-occupied ER, and 4-hydroxytamoxifen-occupied ER present in whole cell extracts. Using transient cotransfection assays, the ability of an intrinsically bent DNA sequence to replace an ERE was tested. When a single consensus ERE, which is induced to bend 56 degrees on ER binding, was replaced with a 54 degrees intrinsic DNA bending sequence, transcription was effectively activated. Similar levels of transcription were also observed when promoters contained either a 108 degrees intrinsic DNA bending sequence or two consensus EREs. However, the 54 degrees DNA bending sequence and a single ERE were unable to cooperatively activate transcription. Because the magnitude and orientation of ER-induced DNA bends are the same with the unoccupied and occupied receptor, DNA bending alone probably does not function as a transcriptional switch to turn on gene transcription. However, DNA bending may be required to provide the architecture needed for modulation of target genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.