Abstract

We found earlier that deoxycorticosterone acetate-salt treatment causes blood pressure-independent left ventricular hypertrophy, but only in male mice. To test the hypothesis that the estrogen receptor-β (ERβ) protects the females from left ventricular hypertrophy, we treated male and female ERβ-deficient (ERβ(-/-)) mice and their male and female littermates (wild-type [WT]) with deoxycorticosterone acetate-salt and made them telemetrically normotensive with hydralazine. WT males had increased (+16%) heart weight/tibia length ratios compared with WT females (+7%) at 6 weeks. In ERβ(-/-) mice, this situation was reversed. Female WT mice had the greatest heart weight/tibia length ratio increases of all of the groups (+23%), even greater than ERβ(-/-) males (+10%). Echocardiography revealed concentric left ventricular hypertrophy in male WT mice, whereas ERβ(-/-) females developed dilative left ventricular hypertrophy. The hypertrophic response in female ERβ(-/-) mice was accompanied by the highest degree of collagen deposition, indicating maladaptive remodeling. ERβ(+/+) females showed robust protective p38 and extracellular signal-regulated kinase 1/2 signaling relationships compared with other groups. Calcineurin Aβ expression and its positive regulator myocyte-enriched calcineurin-interacting protein 1 were increased in deoxycorticosterone acetate-salt female ERβ(-/-) mice, yet lower than in WT males. Endothelin increased murine cardiomyocyte hypertrophy in vitro, which could be blocked by estradiol and an ERβ agonist. We conclude that a functional ERβ is essential for inducing adaptive p38 and extracellular signal-regulated kinase signaling, while reducing maladaptive calcineurin signaling in normotensive deoxycorticosterone acetate female mice. Our findings address the possibility of sex-specific cardiovascular therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call