Abstract

ESR2 is expressed in bone cells, yet few studies have tested its variation for association with BMD, an important determinant of osteoporotic fractures. This was investigated in 723 men and 795 women from the Framingham study. Results show association of variation in this gene with BMD in both women and men. Osteoporotic fracture risk is highly dependent on bone density, a quantitative multifactorial trait with a substantial genetic component. In contrast to the growing body of evidence that estrogen receptor alpha (ESR1) plays a role in bone metabolism, few studies have examined the estrogen receptor beta (ESR2) gene for association with BMD. An ESR2 CA repeat polymorphism, D14S1026, was associated with BMD in two small studies, each with <200 women. The objective of this investigation was to assess whether D14S1026 or four other intronic polymorphisms were associated with BMD in 723 men and 795 women (mean age, 60 years) from the offspring cohort of the population-based Framingham Study. BMD was measured at the femur (neck, trochanter, and Ward's area) and the lumbar spine (L(2)-L(4)). In both women and men, there was significant association of D14S1026 genotype with measures of femoral but not spinal BMD. In addition, genotypes of two common single nucleotide polymorphisms, rs1256031 and rs1256059, in strong linkage disequilibrium with one another but not with D14S1026, were associated with measures of femoral BMD in men. The rs1256031 genotypes had up to a 4.0% difference in mean femoral BMD. An inferred rs1256031-D14S1026-rs1256059 haplotype C-23CA-T was significantly associated with reduced femoral BMD in women (p = 0.03, 0.003, and 0.01 for neck, trochanter, and Ward's area, respectively). Haplotype-based BMD differences ranged from 3.0% to 4.3%. We have observed significant association of common ESR2 variants with measures of femoral BMD in both men and women.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.