Abstract

Background: Studies have shown that perinatal exposure to the synthetic estrogen diethylstilbestrol (DES) leads to feminization of the seminal vesicle (SV) in male mice, as illustrated by tissue hyperplasia, ectopic expression of the major estrogen-inducible uterine secretory protein lactoferrin (LF), and reduced expression of SV secretory protein IV (SVS IV).Objectives: The present study was designed to evaluate the role of the estrogen receptor (ER) in this action by using ER-knockout (ERKO) mice.Methods: Wild-type (WT), ERα-null (αERKO), and ERβ-null (βERKO) male mice were treated with either vehicle or DES (2 μg/day) on neonatal days 1–5. These mice were divided into two groups: In the first group, intact mice were sacrificed at 10 weeks of age; in the second group, mice were castrated at 10 weeks of age, allowed to recover for 10 days, treated with dihydrotestosterone (DHT) or placebo, and sacrificed 2 weeks later. Body weights and SV weights were recorded, and mRNA expression levels of Ltf (lactoferrin), Svs4, and androgen receptor (Ar) were assessed.Results: In DES-treated intact mice, SV weights were reduced in WT and βERKO mice but not in αERKO mice. DES-treated WT and βERKO males, but not αERKO males, exhibited ectopic expression of LF in the SV. DES treatment resulted in decreased SVS IV protein and mRNA expression in WT males, but no effect was seen in αERKO mice. In addition, DES-treated βERKO mice exhibited reduced Svs4 mRNA expression but maintained control levels of SVS IV protein. In DES-treated castrated mice, DHT implants restored SV weights to normal levels in αERKO mice but not in WT mice, suggesting full androgen responsiveness in αERKO mice.Conclusions: These data suggest that DES-induced SV toxicity and feminization are primarily mediated by ERα; however, some aspects of androgen response may require the action of ERβ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.