Abstract

Rationale: Arterial calcification and osteoporosis are associated in postmenopausal women. RANK (the receptor activator of nuclear factor κB), RANKL (RANK ligand), and osteoprotegerin are key proteins in bone metabolism and have been found at the site of aortic calcification. The role of these proteins in vasculature, as well as the contribution of estrogen to vascular calcification, is poorly understood. Objective: To clarify the mechanism of RANKL system to vascular calcification in the context of estrogen deficiency. Methods and Results: RANKL induced the calcification inducer bone morphogenetic protein-2 by human aortic endothelial cells (HAECs) and decreased the calcification inhibitor matrix Gla protein (MGP) in human aortic smooth muscle cells (HASMCs), as quantified by real-time PCR and Western blot analysis. RANKL also induced bone-related gene mRNA expression and calcium deposition (Alizarin red staining) followed by the osteogenic differentiation of HASMCs. Estrogen inhibited RANKL signaling in HAECs and HASMCs mainly through estrogen receptor α. Apolipoprotein E–deficient mice fed with Western high-fat diet for 3 months presented atherosclerotic calcification (Oil red and Alizarin red staining) and osteoporosis (microcomputed tomographic analysis) after ovariectomy and increased expression of RANKL, RANK, and osteopontin in atherosclerotic lesion, as detected by in situ hybridization. Estrogen replacement inhibited osteoporosis and the bone morphogenetic protein osteogenic pathway in aorta by decreasing phosphorylation of smad-1/5/8 and increasing MGP mRNA expression. Conclusions: RANKL contributes to vascular calcification by regulating bone morphogenetic protein-2 and MGP expression, as well as bone-related proteins, and is counteracted by estrogen in a receptor-dependent manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.