Abstract

Estrogen causes dramatic long-term changes in the activity of the uterus. Here we report the molecular cloning of a small (700 base) uterine mRNA species capable of inducing a slow K+ current in Xenopus oocytes. The 130 amino acid protein encoded by this mRNA species has a predicted structure that does not resemble that of previously described voltage-dependent channels from mammalian sources. It is, however, similar to structural motifs found in certain prokaryotic ion channels. The induction of this mRNA by estrogen is rapid; this uterine mRNA species is not detectable in uteri from estrogen-deprived rats, but is substantially induced after 3 hr of estrogen treatment. These results support a critical role for regulation of ion channel expression by estrogen in the uterus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call