Abstract
c-myc oncogene is implicated in tumorigenesis of many cancers, including breast cancer. Although c-myc is a well-known estrogen-induced gene, its promoter has no estrogen-response element, and the underlying mechanism by which estrogen induces its expression remains obscure. Recent genome-wide studies by us and others suggested that distant elements may mediate estrogen induction of gene expression. In this study, we investigated the molecular mechanism by which estrogen induces c-myc expression with a focus on these distal elements. Estrogen rapidly induced c-myc expression in estrogen receptor (ER)-positive breast cancer cells. Although estrogen had little effect on c-myc proximal promoter activity, it did stimulate the activity of a luciferase reporter containing a distal 67-kb enhancer. Estrogen induction of this luciferase reporter was dependent upon both a half-estrogen response element and an activator protein 1 (AP-1) site within this enhancer, which are conserved across 11 different mammalian species. Small interfering RNA experiments and chromatin immunoprecipitation assays demonstrated the necessity of ER and AP-1 cross talk for estrogen to induce c-myc expression. TAM67, the AP-1 dominant negative, partially inhibited estrogen induction of c-myc expression and suppressed estrogen-induced cell cycle progression. Together, these results demonstrate a novel pathway of estrogen regulation of gene expression by cooperation between ER and AP-1 at the distal enhancer element and that AP-1 is involved in estrogen induction of the c-myc oncogene. These results solve the long-standing question in the field of endocrinology of how estrogen induces c-myc expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.