Abstract

In male spontaneously hypertensive rats (SHR) a high NaCl diet increases arterial pressure via a reduction in anterior hypothalamic nucleus norepinephrine release. Young female SHR are relatively well protected from this NaCl-sensitive hypertension, but depletion of both endogenous and dietary estrogens greatly exacerbates NaCl-sensitive hypertension. This study tests the hypothesis that estrogen also protects late middle-aged female SHR from NaCl-sensitive hypertension and that this effect is mediated by an estrogen-related effect on hypothalamic norepinephrine release. Ten-month-old female SHR were ovariectomized and placed on a phytoestrogen-free diet containing either basal or high NaCl. Each rat was implanted with a silastic tube containing 17beta estradiol or vehicle. Three months later, arterial pressure and hypothalamic norepinephrine metabolite levels (MOPEG) were measured. On the basal NaCl diet, estrogen-depleted rats displayed increased arterial pressure (12 mm Hg) and decreased anterior hypothalamic nucleus MOPEG (20%). Both effects were reversed by estrogen treatment. In all groups, the high NaCl diet increased arterial pressure by over 35 mm Hg and reduced anterior hypothalamic nucleus MOPEG by >60%. Across all groups, there was a significant inverse correlation between arterial pressure and anterior hypothalamic nucleus MOPEG. These data suggest that both dietary NaCl excess and estrogen depletion raise arterial pressure in middle-aged female SHR by a decreasing hypothalamic norepinephrine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call