Abstract
The current investigation examined the role of estrogen in the insular cortex (IC) under both normal and ischemic conditions. Experiments were done in anaesthetized male Sprague–Dawley rats. The effect of systemic 17β-estradiol (estrogen) administration on levels of amino acids and of endogenous estrogen obtained by microdialysis and its effect on neuronal activity of cells located in the insular cortex were measured in the absence of, and following permanent occlusion of, the right middle cerebral artery (MCA). In normal rats, intravenous (i.v.) injection of estrogen resulted in a significant increase (greater than 25 spikes/bin) in the spontaneous activity of neurons located within the insular cortex, while there was a significant decrease in γ-aminobutyric acid (GABA) levels measured in IC dialysate. Middle cerebral artery occlusion (MCAO) resulted in a biphasic response consisting of a transient increase in the extracellular concentration of glutamate, aspartate, and GABA, followed by sustained elevations in glutamate and aspartate, but reduced GABA levels 4 h post-MCAO. MCAO also resulted in a significant increase in neuronal activity in the IC (from 28±9 to 120±88 spikes/bin). This MCAO-induced excitation was completely blocked following the prior intravenous administration of estrogen. Systemic estrogen administration also resulted in a delay in the progression and decrease in the final infarct volume by approximately 56%. Taken together, these results suggest that under normal conditions, estrogen excites neurons in the insular cortex by decreasing GABA release (disinhibition) and it plays a role in attenuating the MCAO-induced excitability and death of these neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.