Abstract

Unlike estrogens plus progestagens, tibolone, a selective tissue estrogenic activity regulator, does not increase breast tenderness and mammographic density. To elucidate this, serum and breast levels of tibolone and estrogenic metabolites are measured. Postmenopausal women (n = 102) with early-stage, ER(+ve), primary breast cancer received tibolone or placebo for 14 days in an exploratory, double-blind, randomized trial (STEM carcinoma tissue). Baseline and presurgery sera were collected; tumor tissues were obtained at surgery. E(1) (estrone), E(2) (estradiol), E(1)S (estrone-sulfate), tibolone-its nonsulfated, monosulfated, and disulfated 3-hydroxymetabolites-and Delta(4)-tibolone were measured by validated gas chromatography and mass spectrometry and liquid chromatography with tandem mass spectrometry assays. More than 12 hours after the final dose, serum E(1), E(2), and E(1)S levels were unchanged with placebo, whereas tibolone significantly increased E(1)S and the E(1)S/(E(1) + E(2)) ratio. In tumors, E(1) and E(2) levels were higher than in serum, and E(1)S levels were lower, with placebo and tibolone administration. The percentage of E(1)S was about 90% in serum and 16% in tissue. Tibolone did not affect tissue levels of endogenous estrogens. Serum levels of estrogenic 3alpha- and 3beta-hydroxytibolone, progestagenic/androgenic Delta(4)-tibolone, and monosulfate metabolites were low. Serum 3alphaS,17betaS-tibolone and 3 betaS,17betaS-tibolone levels were 250 and 52 ng/mL, respectively. Tumor levels of 3alpha- and 3beta-hydroxytibolone and Delta(4)-tibolone were higher than in serum, but disulfate levels were lower. The percentage of sulfated tibolone metabolites was 99% in serum and 96% in tumor. Serum metabolite patterns of estradiol and tibolone are different from those in tissues and are compatible with neutral effects of tibolone on breast Ki67 expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.