Abstract

Accumulated clinical and basic evidence suggests that gonadal steroids affect the onset and progression of several neurodegenerative diseases and schizophrenia, and the recovery from traumatic neurological injury such as stroke. Thus, our view on gonadal hormones in neural function must be broadened to include not only their function in neuroendocrine regulation and reproductive behaviors, but also to include a direct participation in response to degenerative disease or injury. Recent findings indicate that the brain up-regulates both estrogen synthesis and estrogen receptor expression at sites of injury. Genetic or pharmacological inactivation of aromatase, the enzyme involved in estrogen synthesis, indicates that the induction of this enzyme in the brain after injury has a neuroprotective role. Some of the mechanisms underlying the neuroprotective effects of estrogen may be independent of the classically defined nuclear estrogen receptors (ERs). Other neuroprotective effects of estrogen do depend on the classical nuclear ERs, through which estrogen alters expression of estrogen responsive genes that play a role in apoptosis, axonal regeneration, or general trophic support. Yet another possibility is that non-classical ERs in the membrane or cytoplasm alter phosphorylation cascades, such as those involved in the signaling of insulin-like growth factor-1 (IGF-1). Indeed, ERs and IGF-1 receptor interact in the activation of PI3K and MAPK signaling cascades and in the promotion of neuroprotection. The decrease in estrogen and IGF-1 levels with aging may thus result in an increased risk for neuronal pathological alterations after different forms of brain injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call