Abstract

In the later stages of breast cancer, estrogen receptor (ER)α-negative cancers typically have higher histological grades than ERα-positive cancers, and transforming growth factor (TGF)-β promotes invasion and metastasis. Our previous study indicated that ERα inhibited TGF-β signaling by inducing the degradation of Smad in an estrogen-dependent manner. In the present study, we report that the suppressive effects of ERα and estrogen on tumor progression are mediated by inhibiting TGF-β signaling. Furthermore, we investigated the effects of antiestrogens such as ICI182,780 (ICI) or tamoxifen (TAM) on TGF-β signaling and breast cancer invasiveness. The levels of total Smad and pSmad were reduced by estrogen, whereas ICI slightly increased them, and TAM had no effect. To investigate the effect of antiestrogens on breast cancer invasiveness, we generated highly migratory and invasive MCF-7-M5 cells. The migration and invasion of these cells were suppressed by the inhibitor of TGF-β receptor kinase, SB-505124, and estrogen. However, antiestrogens did not suppress the migration and invasion of these cells. In addition, we screened TGF-β target genes whose expression was reduced by estrogen treatment and identified four genes associated with breast cancer invasiveness and poor prognosis. The expression of these genes was not decreased by antiestrogens. These observations provide a new insight into estrogen function and the mechanisms underlying estrogen-mediated suppression of tumor progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.