Abstract

ObjectiveEstrogen is correlated to the lower mortality and disease severity of female than that of male, which indicates the potential therapeutic role of estrogen supplement therapy in sepsis. The structure of Daidzein is similar to that of 17β estradiol (E2), an estrogen in human body, causing the exogenous Daidzein can interact with estrogen receptor as well as E2 in the body. We aim to explore the therapeutic role of estrogen in sepsis-induced vascular dysfunction. Also, we wonder if estrogen regulates blood pressure via glucocorticoid-mediated vascular reactivity. MethodsFemale SD rats received ovariectomy (OVX) to induce estrogen deficiency. After 12 weeks of administration, cecal ligation and puncture (CLP) was used to establish the in vivo model of sepsis. Lipopolysaccharide (LPS) was used to construct the in vitro model of sepsis in vascular smooth muscle cells (VSMCs). E2 and Daidzein were used for estrogen supplement therapy. ResultsE2 and Daidzein significantly inhibited inflammation infiltration and histopathological injury in thoracic aorta in the rat model with CLP. E2 and Daidzein improved carotid pressure and vascular hyporeactivity in sepsis rats with OVX. Importantly, E2 and Daidzein promoted glucocorticoid permissive action and increased glucocorticoid receptor α (GRα) expression in thoracic aorta smooth muscle cells. E2 and Daidzein upregulated GRα, and inhibits cytokine production, proliferative phenotype and cell migration in LPS-induced VSMCs. ConclusionEstrogen improved vascular hyporeactivity in thoracic aorta induced by sepsis via permissive effect of GRα expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call