Abstract

AimGiven estrogen's recognized regulatory influence on diverse metabolic and immune functions, this study sought to explore its potential impact on fibrosis and elucidate the underlying metabolic regulations. MethodsFemale mice underwent ovary removal surgery, followed by carbon tetrachloride (CCl4) administration to induce liver injury. Biochemical index analysis and histopathological examination were then conducted. The expression levels of alpha-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), and collagen type 1 alpha 1 chain (COL1A1) were assessed using western blotting to further elucidate the extent of liver injury. Finally, metabolite extraction and metabolomic analysis were performed to evaluate metabolic changes. ResultsOvary removal exacerbated CCl4-induced liver damage, while estrogen supplementation provided protection against hepatic changes resulting from OVX. Furthermore, estrogen mitigated liver injury induced by CCl4 treatment in vivo. Estrogen supplementation significantly restored liver damage induced by OVX and CCl4. Comparative analysis revealed significant alterations in pathways including aminoacyl-tRNA biosynthesis, glycine, serine, and threonine metabolism, lysine degradation, and taurine and hypotaurine metabolism in estrogen treatment. ConclusionEstrogen supplementation alleviates liver injury induced by OVX and CCl4, highlighting its protective effects against fibrosis and associated metabolic alterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.