Abstract

Estrogenic hormones, believed to exert most of their effects via the direct interaction of their receptors with chromatin, are found to increase cAMP in target breast cancer and uterine cells in culture and in the intact uterus in vivo. Increases in intracellular cAMP are evoked by very low concentrations of estradiol (half maximal at 10 pM) and by other physiologically active estrogens and antiestrogens, but not by an inactive estrogen stereoisomer. These increases in cAMP result from enhanced membrane adenylate cyclase activity by a mechanism that does not involve genomic actions of the hormones (are not blocked by inhibitors of RNA and protein synthesis). The estrogen-stimulated levels of cAMP are sufficient to activate transcription from cAMP response element-containing genes and reporter plasmid constructs. Our findings document a nongenomic action of estrogenic hormones that involves the activation of an important second-messenger signaling system and suggest that estrogen regulation of cAMP may provide an additional mechanism by which this steroid hormone can alter the expression of genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.