Abstract
The increased incidence of autoimmune disease in premenopausal women suggests the involvement of sex steroids in the pathogenesis of these disease processes. The effects of estrogen on autoimmunity and inflammation may involve changes in the secretion of inflammatory mediators by mononuclear phagocytes. Estradiol, for example, has been reported to regulate TNF, IL-6, IL-1 and JE expression. In the present study the effects of the estrogen agonist, estriol, on cytokine expression have been investigated in mice administered a sublethal lipopolysaccharide, LPS, challenge. Pretreatment of mice with pharmacologic doses of estriol, 0.4-2 mg/kg, resulted in a significant increase in serum TNF levels in both control and autoimmune MRL/lpr mice, following LPS challenge. This increase in TNF over the placebo group was blocked by the estrogen antagonist tamoxifen. Estriol treated mice also exhibited a rapid elevation in serum IL-6 levels following LPS challenge with the peak increase occurring 1 hr post LPS. This contrasted with the placebo group in which maximal serum IL-6 levels were detected at 3 hrs post challenge. This shift in the kinetics of IL-6 increase by estriol was inhibited by tamoxifen. The estriol mediated effects of TNF and IL-6 serum levels were consistent with the changes in TNF and IL-6 mRNA observed ex vivo in elicited peritoneal macrophages. Macrophage cultures from estriol treated animals however, did not demonstrate significant differences from the placebo group for TNF or NO secretion following in vitro LPS challenge. These results suggest that the estrogen agonist estriol can have significant quantitative, TNF, and kinetic, IL-6, effects on inflammatory monokines produced in response to an endotoxin challenge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.