Abstract
Deep Learning (DL) based Side-Channel Analysis (SCA) has been extremely popular recently. DL-based SCA can easily break implementations protected by masking countermeasures. DL-based SCA has also been highly successful against implementations protected by various trace desynchronization-based countermeasures like random delay, clock jitter and shuffling. Over the years, many DL models have been explored to perform SCA. Recently, Transformer Network (TN) based model has also been introduced for SCA. Though the previously introduced TN-based model is successful against implementations jointly protected by masking and random delay countermeasures, it is not scalable to long traces (having a length greater than a few thousand) due to its quadratic time and memory complexity. This work proposes a novel shift-invariant TN-based model with linear time and memory complexity. he contributions of the work are two-fold. First, we introduce a novel TN-based model called EstraNet for SCA. EstraNet has linear time and memory complexity in trace length, significantly improving over the previously proposed TN-based model’s quadratic time and memory cost. EstraNet is also shift-invariant, making it highly effective against countermeasures like random delay and clock jitter. Secondly, we evaluated EstraNet on three SCA datasets of masked implementations with random delay and clock jitter effect. Our experimental results show that EstraNet significantly outperforms several benchmark models, demonstrating up to an order of magnitude reduction in the number of attack traces required to reach guessing entropy 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IACR Transactions on Cryptographic Hardware and Embedded Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.