Abstract

The neurotoxic effects of estradiol on hypothalamic arcuate neurons were examined in a model of chronic estrogenization induced by means of a single injection of estradiol valerate (EV). Eight weeks after EV treatment, a 60% decrease in the total number of beta-endorphin-immunoreactive neurons was detected in the arcuate nucleus. In contrast, the numbers of neurotensin-, somatostatin-, and tyrosine hydroxylase-immunoreactive neurons were unchanged, suggesting that the effects of estradiol were selective for beta-endorphin neurons. Further evidence for the selectivity of estradiol's actions was provided by RIAs indicating decreases in hypothalamic beta-endorphin concentrations, but not in Metenkephalin or neuropeptide-Y concentrations. Cell counts performed in Nissl-stained material using unbiased stereological methods revealed a reduction in the total number of neurons in the EV-treated group compared to that in the controls. The estimated number of neurons lost (approximately 3500) corresponded precisely with the total number of beta-endorphin neurons lost (approximately 3600), as estimated using quantitative immunocytochemistry. These results confirm the selectivity of estradiol's effect on the beta-endorphin cell population and demonstrate that the observed decrease in beta-endorphin immunoreactivity reflects actual cell loss. The evidence indicates that the selective neurotoxic effect of estradiol on hypothalamic beta-endorphin neurons contributes to reproductive senescence, suggesting that steroids may participate in disruption of the biological functions that they normally facilitate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call