Abstract

We report the first study of voltage-activated and GnRH-induced plasma membrane currents and their modulation by estradiol (E2) in mouse gonadotrophs. In consideration of the pleiotropic effects of E2 on gonadotrophin secretion and the relationship between plasma membrane electrical excitability and secretion, our objective was to determine the role of E2 in modulating gonadotroph plasma membrane currents. We measured total voltage-activated and GnRH-induced currents using the perforated-patch configuration of the patch-clamp technique, which preserves signaling pathways, including GnRH-induced Ca2+ oscillations. We show that female mouse gonadotrophs are similar to those from other species in that the voltage-activated net current response exhibits an inward fast activating current that is inhibited by tetrodotoxin, which is characteristic of a Na+ current, and a larger magnitude outward current with a profile suggesting the presence of multiple K+ currents. Furthermore, in voltage-clamped mouse gonadotrophs, GnRH activates large amplitude current oscillations that are apamin sensitive and have a reversal potential of -90 mV, consistent with Ca2+-activated K+ currents. Significantly, E2 pretreatment for 2-5 d decreased the density of both the peak outward voltage-activated current and the peak GnRH-induced current. The specific linkage between the observed E2 effects on membrane currents and, ultimately, gonadotroph function remains to be established. However, because decreased K+ current density is associated with an increase in membrane electrical excitability, we postulate increased excitability is one of the modes of action of E2 in sensitizing the gonadotroph to GnRH, an event central to the regulation of cyclic gonadotrophin secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.