Abstract

Dissociated cultured rat hippocampal pyramidal neurons respond to estradiol with a time-dependent, twofold increase in density of their dendritic spines. This effect is mediated by an estrogen receptor, probably of the alpha nuclear receptor type. In searching for the molecular mechanisms leading from the initial activation of the estrogen receptor to the final formation of new dendritic spines, we found that estradiol acts on GABAergic interneurons expressing the estrogen receptor by decreasing their inhibitory tone. In culture, this is assumed to cause a shift in the balance between excitation and inhibition toward enhanced excitation, overactivation of the pyramidal neurons, and subsequent formation of novel dendritic spines. The action of estradiol on spine formation is mediated by phosphorylation of cyclic AMP response element binding protein in the pyramidal neurons and is blocked when inhibition is enhanced by diazepam and when excitation is blocked by tetrodotoxin. Progesterone blocks the effect of estradiol on dendritic spines through its conversion to tetrahydroprogesterone, which enhances GABAergic inhibition. Subsequent to formation of novel dendritic spines, there is an increase in the density of glutamatergic receptors in the affected cells, an increase in the cellular calcium response to glutamate, and an increase in network synaptic activity among the cultured neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.