Abstract

Previous studies have found that estrogens play a role in functional connectivity in the brain; however, little research has been done regarding how estradiol is associated with functional connectivity in postmenopausal women. The purpose of this study was to examine the relationship between estradiol and functional connectivity in postmenopausal women. Structural and blood oxygenation level-dependent resting-state magnetic resonance imaging scans of 88 cognitively healthy postmenopausal individuals were obtained along with blood samples collected the same day as the magnetic resonance imaging to assess hormone levels. We generated connectivity values in CONN toolbox version 20.b, an SPM-based software. A regression analysis was run using estradiol level and regions of interest (ROI), including the hippocampus, parahippocampus, dorsolateral prefrontal cortex, and precuneus. Estradiol level was found to enhance parahippocampal gyrus anterior division left functional connectivity during ROI-to-ROI regression analysis. Estradiol enhanced functional connectivity between the parahippocampal gyrus anterior division left and the precuneus as well as the parahippocampal gyrus anterior division left and parahippocampal gyrus posterior division right. An exploratory analysis showed that years since the final menstrual period was related to enhanced connectivity between regions within the frontoparietal network. These results illustrated the relationship between estradiol level and functional connectivity in postmenopausal women. They have implications for understanding how the functioning of the brain changes for individuals after menopause that may eventually lead to changes in cognition and behavior in older ages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call