Abstract

This study has designed and implemented a novel speed controller and multi-estimator in a sensorless field-oriented control system for controlling induction motor (IM) speed. The speed controller was designed based on a fuzzy credit-assigned cerebellar model articulation controller (FCA-CMAC) to provide the online learning ability required for IM speed control. In contrast to the fuzzy cerebellar model articulation controller, the FCA-CMAC provides a faster convergence speed in the learning process for approximating a nonlinear function. Additionally, the multi-estimator provides a real-time adaptive estimation of motor speed and rotor resistance for achieving robustness for the IM controller against varying motor parameters. The multi-estimator is implemented by designing a cerebellar model articulation controller (CMAC) PI controller based on model reference adaptive system theory to adjust the adaptive pseudo-reduced-order flux observer parameters. Experiments performed on a 3-hp IM confirmed the effectiveness of the proposed approach. The experimental results confirm that the proposed control scheme achieves excellent dynamic and tracking responses to varying motor parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call