Abstract

AbstractThis analysis deals with one of the basic problem category of vibratory systems, means the complete and complex characterization of elastic and viscous isolators behaviour under dynamic loads such as vibrations, seismic waves, shocks, etc. Usually, the dynamic characteristics of vibration isolators made by elastomeric materials are considered to have a constant shape for a certain practical case. It is ignored the thermal phenomenon inside the isolator block during the exploitation cycles and its influences on the proper characteristic parameters. This usual approximation leads to more or less significant differences between simulation and practical evolution of a vibration isolator subjected to the same dynamic load. Continuous changes of rigidity modulus and/or dissipative characteristics due to internal thermal effects imply aleatory evolution of the isolated system, unstable movements and resonance imminence danger. The partial results of this analysis dignify the linkage between thermal effects into the elastomeric isolator and its essential dynamic parameters. Using of these correlations frames the seismic shock and vibration protective devices designing and deployment areas. (© 2012 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.