Abstract

Cesium-137, as the main fission product, is of special interest in the marine environment because of its solubility, which results to very low sinking time. Nevertheless, the conservative form of the main percentage of 137Cs introduced in the marine environment (70%) makes 137Cs to be included in the salinity of sea water. Based on this property, in this study, we examine potential relations between 137Cs activity concentrations and marine parameters issued from Earth Observation (EO) data products in the Southern Aegean Sea, in order to investigate the possibility of 137Cs to be recorded by satellite data. In particular, measurements of physical and biological marine parameters issued from the Copernicus Marine Environment Monitoring Service (CMEMS) database and MODIS ocean products are retrieved for the dates of 137Cs field measurements. Single and multiple regression analyses are performed between the marine parameters and 137Cs activity concentration measurements for three distinctive time periods (total, cold, and warm period). The best results are obtained from multiple regressions, one for each time period (r2 > 0.70). The models show that during cold period, 137Cs activity concentrations are highly correlated to both chlorophyll and nutrients (phosphates) while during warm and the total period, they seem to be mainly correlated to the photosynthetic available incident solar radiation on the sea surface. For each period, we propose a multiparameter model linear in its parameters. Although the results of this study must be considered preliminary due to the limited size of the datasets, for the first time, we show that estimations of 137Cs activity concentrations from EO measurements and CMEMS environmental models are feasible, and they can be used as a marine radiological assessment tool for a closed Mediterranean bay such as Souda Bay in Greece.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.