Abstract
ABSTRACTIn this article, point and interval estimations of the parameters α and β of the inverse Weibull distribution (IWD) have been studied based on Balakrishnan’s unified hybrid censoring scheme (UHCS), see Balakrishnan et al. In point estimation, the maximum likelihood (ML) and Bayes (B) methods have been used. The Bayes estimates have been computed based on squared error loss (SEL) function and Linex loss function and using Markov Chain Monte Carlo (MCMC) algorithm. In interval estimation, a (1 − τ) × 100% approximate, bootstrap-p, credible and highest posterior density (HPD) confidence intervals (CI′s) for the parameters α and β have been introduced. Based on Monte Carlo simulation, Bayes estimates have been compared with their corresponding maximum likelihood estimates by computing the mean squared errors (MSE′s) of all estimators. Finally, point and interval estimations of all parameters have been studied based on a real data set as an illustrative example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.