Abstract
For a simple multivariate regression model, the problem of estimating the intercept vector is considered when it is apriori suspected that the slope may be restricted to a subspace. Four estimation strategies have been developed for the intercept parameter. In this situation, the estimates based on a preliminary test as well as on the Stein-rule are desirable. Exact bias and risks of all of these estimators are derived and their efficiencies relative to classical estimators are studied under quadratic loss function. An optimum rule for the preliminary test estimator is discussed. It is shown that the shrinkage estimator dominates the classical one, whereas none of the preliminary test and shrinkage estimator dominate each other. It is found that shrinkage estimator dominates the preliminary test estimator except in a range around the restriction. Further, for large values of α, the level of statistical significance, shrinkage estimator dominates the preliminary test estimator uniformly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.