Abstract

This paper extends Whittle estimation to linear processes with a general stationary ergodic martingale difference noise. We show that such estimation is valid for standard parametric time series models with smooth bounded spectral densities, e.g., ARMA models. Furthermore, we clarify the impact of the hidden dependence in the noise on such estimation. We show that although the asymptotic normality of the Whittle estimates may still hold, the presence of dependence in the noise impacts the limit variance. Hence, the standard errors and confidence intervals valid under i.i.d. noise may not be applicable and thus require correction. The goal of this paper is to raise awareness to the impact of a non-i.i.d. noise in applied work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.