Abstract

The failure data of bearing products is random and discrete and shows evident uncertainty. Is it accurate and reliable to use Weibull distribution to represent the failure model of product? The Weibull distribution, log-normal distribution, and an improved maximum entropy probability distribution were compared and analyzed to find an optimum and precise reliability analysis model. By utilizing computer simulation technology and k-s hypothesis testing, the feasibility of three models was verified, and the reliability of different models obtained via practical bearing failure data was compared and analyzed. The research indicates that the reliability model of two-parameter Weibull distribution does not apply to all situations, and sometimes, two-parameter log-normal distribution model is more precise and feasible; compared to three-parameter log-normal distribution model, the three-parameter Weibull distribution manifests better accuracy but still does not apply to all cases, while the novel proposed model of improved maximum entropy probability distribution fits not only all kinds of known distributions but also poor information issues with unknown probability distribution, prior information, or trends, so it is an ideal reliability analysis model with least error at present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.