Abstract

Young's modulus and Poisson's ratio of a tissue can be simultaneously obtained using two indentation tests with two different sized indentors in two indentations. Owing to the assumption of infinitesimal deformation of the indentation, the finite deformation effect of indentation on the calculated material parameters was not fully understood in the double indentation approach. However, indentation tests with infinitesimal deformation are not practical for the measurement of real tissues. Accordingly, finite element models were developed to simulate the indentation with different indentor diameters and different deformation ratios to investigate the finite deformation effect of indentation. The results indicated that Young's modulus E increased with the increase in the indentation deformation w, if the finite deformation effect of indentation was not considered. This phenomenon became obvious when Poisson's ratio v approached 0.5 and/or the ratio of indentor radius and tissue thickness a/h increased. The calculated Young's modulus could be different by 23% at 10% deformation in comparison with its real value. The results also demonstrated that the finite deformation effect to indentation on the calculation of Poisson's ratio v was much smaller. After the finite deformation effect of indentation was considered, the error of the calculated Young's modulus could be controlled within 5% (a/h = 1) and 2% (a/h = 2) for deformation up to 10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.