Abstract

Greenhouse ventilation has always been an important concern for agricultural workers. This paper aims to introduce a low-cost wind speed estimating method based on SURF (Speeded Up Robust Feature) feature matching and the schlieren technique for airflow mixing with large temperature differences and density differences like conditions on the vent of the greenhouse. The fluid motion is directly described by the pixel displacement through the fluid kinematics analysis. Combining the algorithm with the corresponding image morphology analysis and SURF feature matching algorithm, the schlieren image with feature points is used to match the changes in air flow images in adjacent frames to estimate the velocity from pixel change. Through experiments, this method is suitable for the speed estimation of turbulent or disturbed fluid images. When the supply air speed remains constant, the method in this article obtains 760 sets of effective feature matching point groups from 150 frames of video, and approximately 500 sets of effective feature matching point groups are within 0.1 difference of the theoretical dimensionless speed. Under the supply conditions of high-frequency wind speed changes and compared with the digital signal of fan speed and data from wind speed sensors, the trend of wind speed changes is basically in line with the actual changes. The estimation error of wind speed is basically within 10%, except when the wind speed supply suddenly stops or the wind speed is 0 m/s. This method involves the ability to estimate the wind speed of air mixing with different densities, but further research is still needed in terms of statistical methods and experimental equipment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.