Abstract

Compliant offshore structures such as spars, tension leg platforms (TLPs) and semi-submersibles have been dramatically improved in recent years due to their capability for deep water operation. Waves are the most important environmental phenomenon affecting these offshore structures. Estimation of wave forces is vital in offshore structure design. For large compliant offshore platforms, Morrison’s equation is not valid anymore and usually diffraction theory is used. In this research, by using the finite difference method, a detailed analysis of the first-order diffraction of monochromatic waves on a large cylinder as a structural element is performed to solve the radiation and diffraction potentials. The results showed that the developed model is a reliable tool to estimate the wave forces and hydrodynamic coefficients on large structure elements when wave diffraction and radiation are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.