Abstract
Abstract Wastewater flowrate exhibits valuable information on the conditions in a sewer line. However, existing hardware flowrate sensors are rather expensive, vulnerable to fouling and breakages, and require frequent and laborious maintenance. Therefore, they are typically only mounted in a few key locations of a sewer system, leading to a lack of important information in a major part of the network. Utilizing more cost-effective sensors and a soft sensor approach is advisable for estimating the flowrate at locations where hardware sensors are lacking. Here, the development and testing of a data-driven soft sensor for estimating the wastewater flowrate based on the water level information obtained from a low-cost ultrasonic distance sensor are presented. The research included a long-term functionality testing period of the sensor in a cold region. The soft sensor-based flowrate was applied to estimate inflow and infiltration, indicating the conditions of the sewer line. The harsh conditions inside the sewer manhole caused challenges for the reliability of the distance measurement based on an ultrasonic principle. With the developed model-based soft sensor, it seems possible to accurately estimate the wastewater flowrate. Together with additional information, it might also enable accurate monitoring of inflows and infiltrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.