Abstract

Vegetation water content, quantified as the leaf equivalent water thickness (EWT), can serve as an indicator of vegetation stress. The intensity data recorded by terrestrial laser scanning (TLS) instruments, operating at shortwave infrared wavelengths, can be used to estimate the three-dimensional distribution of EWT, after a full and rigorous calibration for the range and incidence angle effects. However, TLS instruments do not record the incidence angles automatically, making calibration challenging. In this study, intensity data from two commercially available TLS instruments (Leica P40, 1550 nm shortwave infrared wavelength, and Leica P20, 808 nm near-infrared wavelength) were combined in a normalized difference index (NDI). The NDI was found to minimize the incidence angle effects with no need for further calibration. A dry-down experiment was conducted using deciduous and conifer canopies. The NDI was found to be highly correlated to EWT at leaf level (R2 of 0.91 and 0.74) and at canopy level (R2 of 0.89 and 0.74) for the deciduous and conifer canopies, respectively. Three-dimensional distributions of EWT at canopy level were generated, which revealed some vertical heterogeneity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.