Abstract
A mathematical model is presented for open-channel networks that expresses the dynamic relationships, in terms of transcendental transfer functions, between the gate opening sections and the corresponding stored water volume variations in the different canal reaches with respect to an initial reference condition of uniform flow. Series expansion around s = 0 gives a state variable linear and time-invariant model as well as the corresponding rational transfer matrix. With this last model, taken as the nominal model, is associated a measure of its “distance” from the first model, described by the maximum singular value of a suitable matrix, which characterizes the uncertainty and can be used in the synthesis of a robust control system based on the nominal model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.