Abstract

The flux-variance similarity relation and the vertical transfer of scalars exhibit dissimilarity over different types of surfaces, resulting in different parameterization approaches of relative transport efficiency among scalars to estimate turbulent fluxes using the flux-variance method. We investigated these issues using eddycovariance measurements over an open, homogeneous and flat grassland in the eastern Tibetan Plateau in summer under intermediate hydrological conditions during rainy season. In unstable conditions, the temperature, water vapor, and CO2 followed the flux-variance similarity relation, but did not show in precisely the same way due to different roles (active or passive) of these scalars. Similarity constants of temperature, water vapor and CO2 were found to be 1.12, 1.19 and 1.17, respectively. Heat transportation was more efficient than water vapor and CO2. Based on the estimated sensible heat flux, five parameterization methods of relative transport efficiency of heat to water vapor and CO2 were examined to estimate latent heat and CO2 fluxes. The strategy of local determination of flux-variance similarity relation is recommended for the estimation of latent heat and CO2 fluxes. This approach is better for representing the averaged relative transport efficiency, and technically easier to apply, compared to other more complex ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.