Abstract

AbstractTurbulent mixing within sub‐channels plays a crucial role in understanding the thermal hydraulics of reactor channels. It serves as an empirical parameter in sub‐channel analysis and has long been a challenge in the nuclear industry. Conducting experiments in this context is challenging due to the stringent requirement of maintaining pressure balance among sub‐channels to prevent convection effects. Fortunately, direct numerical simulation (DNS) is emerging as an invaluable tool for addressing this persistent issue. DNS enables the direct computation of turbulent mixing by analyzing fluctuating lateral velocities, offering a more profound understanding of the underlying phenomena. In this study, DNS was conducted at six Reynolds numbers ranging from 17,640 to 1.5 × 105 in pressurized water reactor (PWR) geometry to investigate the lateral mixing driven by turbulence. By studying intricate mechanisms governing the turbulent mixing, the valuable insights into reactor thermal performance and safety are provided. Furthermore, a correlation for turbulent mixing of energy based on the DNS data has been derived, enhancing our ability to model and predict this critical aspect of reactor behaviour. Additionally, this paper explores temperature fluctuations occurring at the fuel rod surface due to turbulence. A probabilistic distribution for temperature fluctuation under specific reactor conditions is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.