Abstract

The forest tree height and aboveground biomass (AGB) are important indicators for monitoring changes and trends in forest carbon storage and terrestrial carbon fluxes. Accurate large-scale wall-to-wall mapping of the forest tree height and AGB remain challenging due to the limited data availability for extraction tree height and the data signal saturation problem in AGB estimation. In this study, we explored the potential of forest tree height mapping using stereo imageries, and analyzed whether accounting for such information, in addition to optical sensor data, could improve the performance of AGB estimations of coniferous forests in a case study in North China. First, a spatially continuous tree height product was obtained using Ziyuan-3 satellite (ZY-3) stereo images combined with a digital elevation model (DEM) obtained from Advanced Land Observing Satellite (ALOS) data. Second, two AGB estimation models were established by combining the forest tree height with vegetation index, spectral, biophysical (from Sentinel-2 images), and topographic variables. A random forest algorithm was utilized to evaluate the effect of including the tree height variable in the AGB estimation. The results showed that the tree height estimation using the nadir and forward views of the ZY-3 stereo images was more accurate than that based on the nadir and backward views from the same images. The AGB estimation model incorporating the tree height variable with a coefficient of determination value of 0.7789, a root mean square error (RMSE) value of 29.815 Mg/ha and a relative RMSE of 23.42% was more robust and effective, thereby demonstrating thatthe tree height variable can be used to alleviate the data signal saturation issue successfully. The proposed approach can provide new insight into forest tree height mapping and AGB products obtained from satellite stereo images and freely accessible Sentinel-2 multispectral images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.