Abstract

The determination of the thermoelastic properties of polyimide (PI) fibers is important for their applications, however, these properties are difficult to measure directly, especially the transverse thermoelastic properties. Here, the transverse thermoelastic properties of PI fibers, including transverse Young's modulus (2.12 GPa), shear modulus (0.94 GPa), Poisson's ratio (0.05), and coefficient of thermal expansion (45.68 μm/m°C), were estimated by combining dynamic and static thermo-mechanical techniques, as well as various relevant micromechanical models. The transverse Young's modulus of PI fibers was only 1/46th of the longitudinal one, and the transverse coefficient of thermal expansion of PI fibers was positive, unlike the longitudinal one, which was negative, showing the typical anisotropy of PI fibers. Finally, the thermoelastic properties of the PI fibers were in turn used to predict the thermoelastic behavior of the PI fiber-reinforced composites, thus validating their effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call