Abstract

The present study focused on estimating the complex nonlinear relationship between the composition and phase transformation temperatures of Ti–Ni–Pd shape memory alloys by artificial neural networks (ANN). The ANN models were developed by using the experimental data of Ti–Ni–Pd alloys. It was found that the predictions are in good agreement with the trained and unseen test data of existing alloys. The developed model was able to simulate new virtual alloys to quantitatively estimate the effect of Ti, Ni, and Pd on transformation temperatures. The transformation temperature behavior of these virtual alloys is validated by conducting new experiments on the Ti–rich thin film that was deposited using multi target sputtering equipment. The transformation behavior of the film was measured by varying the composition with the help of aging treatment. The predicted trend of transformational temperatures was explained with the help of experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call