Abstract

Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) are a polymorphic group of clinical disorders comprising the major cause of renal failure in children. Included within CAKUT is a wide spectrum of developmental malformations ranging from renal agenesis, renal hypoplasia and renal dysplasia (maldifferentiation of renal tissue), each characterized by varying deficits in nephron number. First presented in the Brenner Hypothesis, low congenital nephron endowment is becoming recognized as an antecedent cause of adult-onset hypertension, a leading cause of coronary heart disease, stroke, and renal failure in North America. Genetic mouse models of impaired nephrogenesis and nephron endowment provide a critical framework for understanding the origins of human kidney disease. Current methods to quantitate nephron number include (i) acid maceration (ii) estimation of nephron number from a small number of tissue sections (iii) imaging modalities such as MRI and (iv) the gold standard physical disector/fractionator method. Despite its accuracy, the physical disector/fractionator method is rarely employed because it is labour-intensive, time-consuming and costly to perform. Consequently, less rigourous methods of nephron estimation are routinely employed by many laboratories. Here we present an updated, digitized version of the physical disector/fractionator method using free open source Fiji software, which we have termed the integrated disector method. This updated version of the gold standard modality accurately, rapidly and cost-effectively quantitates nephron number in embryonic and post-natal mouse kidneys, and can be easily adapted for stereological measurements in other organ systems.Electronic supplementary materialThe online version of this article (doi:10.1186/2054-3581-1-12) contains supplementary material, which is available to authorized users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.